

Nematodirus battus

- Typically infects young lambs,6-12 weeks old
- □ Symptoms
 - Acute scouring
 - Dehydration
 - High mortality rate

 Commonly controlled using benzimidazole (1-BZ)

N. battus life cycle

High numbers of larvae on pasture – persist for about 1 month

Infectious larvae on pasture in autumn/early winter

Egg + L3 Egg + L1

Acute disease occurs when synchronous hatching coincides with the grazing of young lambs

Low level infections in older animals

Synchronous hatching of developed eggs occurs **April- June**

(Hatching = chill followed by a mean temperature >10°C)

Hatching out with the expected conditions/ time points

Eggs typically overwinter on pasture and hatch next spring.

Nematodirus research

□ Research conducted in 1950's

Journal of Helminthology, Vol. XXVIII, Nos. 3/4, 1954, pp. 119-122.

A Further Description of *Nematodirus battus* Crofton and Thomas, 1951

By H. D. CROFTON and R. J. THOMAS Department of Zoology, University of Bristol

- Research papers published in the last 20 years:
 - Nematodirus battus 21
 - Teladorsagia circumcincta 597

Changing behaviour

Previously:

Spring-time disease of young lambs

Now:

Still a spring-time disease BUT...

- Infection of older animals throughout the year
- Autumn Nematodirosis
- Emergence of BZ-resistant Nematodirus

Research is required to re-characterise this parasite and to understand what is driving these changes

Project aims

1. Create an accurate picture of the prevalence of BZ resistance in UK *N. battus* populations

2. Identify potential risk factors relating to the development and spread of BZ resistance in *N. battus*

3. Develop and evaluate a high-throughput diagnostic molecular assay for the assessment of the BZ resistance genotype of *N. battus* populations

Benzimidazole resistance

Benzimidazole

- Mode of action
 - Inhibition of microtubule polymerisation
 - \triangleright Colchicine binding sites on β -tubulin

- □ Benzimidazole resistance:
 - > Single nucleotide polymorphisms (SNPs) within the β -tubulin isotype 1 gene
 - > Alter the conformation of the binding sites

F167Y, E198A & F200Y

Benzimidazole resistance

Majority of farms in the UK have BZ-resistant
 GIN

- □ Resistance development:
 - Environmental
 - treatment
 - management factors

BZ-resistance in N. battus

- Previously believed refractory to the development of resistance
- □ First case of resistance identified in 2010
- BZ-resistance was confirmed by dose and slaughter test at Moredun

Sample collection

- Veterinary Investigation centres
- Regional advisors
- Sampling trips

Animal and Horticultural Development Board

297 N. battus populations from 284 farms

Sample processing

 Pyrosequencing used to analyse the F200Y SNP in N.
 battus (Morrison et al. 2014)

 30 individual eggs/L3 analysed per population

297 N. battus populations from 284 farms

Prevalence of BZ-r alleles

- □ Low resistant allele frequency ~3% UK overall
- Focal regions of high frequency
- Resistant allele identified in ¼ of populations tested

England & Wales

Mean r gene frequency 5% range 0-98%

Scotland

Mean r gene frequency 1% range 0-18%

Prevalence of BZ-r alleles

- BZ-r alleles identified at low levels across the UK
- Several potential 'focal regions'
 of resistance have been identified
- Origin of resistance unclear
 - Multiple spontaneous, recurring mutations
 - Pre-existing mutation
 - Dissemination from a single source

Prevalence of BZ-r alleles

Next steps...

Further sampling to ensure accurate representation of UK *N. battus* populations

AHDB yearbook 2014: sheep

Collaboration with University of Calgary to conduct sequencing of N. battus populations to investigate population structure & potential origins of resistance

Redman et al. 2015

- BZ-resistance
- Changing epidemiology of Nematodirus

Risk factor analysis

Hatching patterns

Hatching patterns

- Historically 10 days at 10°C following a period of chilling
- A significant proportion of eggs were able to hatch without a chill stimulus

Hatching patterns

Proportion of eggs hatched:

0-15% 15-30% 30-60% >60%

Hatching vs. genotype

Is the emergence of resistance a result of the recent change in hatching patterns of N. battus?

- Increased number of generations possible per annum
- > Increased selection pressure

 No correlation between resistant allele frequency and proportional hatch under non-chill conditions

Hatching vs. genotype

 Resistant allele frequency higher in larvae hatched under non-chill conditions than unhatched eggs

Wilcoxon signed rank p=0.044

Autumn hatching

Autumn hatching

Parasite population structure

Questionnaire

Questionnaire

- □ Online survey
 - Grazing management
 - □ Worm control practices
 - Farm demographics

 Distributed to farmers involved in our genotyping survey and the wider farming community

Outcomes so far...

Prevalence survey

✓ BZ-r alleles at low frequency with focal regions of higher frequency

Risk factor analysis

- Variation between populations in ability to hatch without a chill stimulus
- Emergence of resistance not thought to be linked to changes in hatching patterns
- Resistant allele not believed to carry a fitness cost
- Questionnaire currently live

End goal...

- Current prevalence of BZresistance in N. battus
- Evaluate risk factors
- □ Novel diagnostic

➤ Aim — to inform future best practice advice & reduce the economic impact of BZ-resistance in this species

Acknowledgments

Supervisors:

Dave Bartley

Jan van Dijk

Sian Mitchell

Funders:

Thanks to:

Moredun Parasitology team

Farmers involved in this project

