The role of seedbank composition and biotic function in vulnerable erosive

agroecosystems

Ashley Gorman

MRP Inter-Institutional Post-Graduate Competition June 28th 2016

The James Hutton Institute

Science connecting land and people

DUNDEE

Why Arable Weeds Matter...

- Provide important ecosystem services within simplified agroecosystems
 - Pollination: UK £690m, worldwide £120b
- Vital buffer against short-term disturbance events
- Influenced by cultivation practices
- Effective indicators of farmland biodiversity

Research Aims:

- Quantify the influence of erosion on seedbank diversity and function
- Investigate role of the weed seedbank influencing physicochemical behaviour of agricultural soils
- Improve understanding of seed fate to inform sustainable weed management

Seedbanks and Management

- Assessing the importance of tillage practices on seedbank composition and distribution
 - 12 year barley field trial
 - 3 management treatments
 - No till, minimum till, conventional, compaction, deep plough
 - Barley crop type
 - Crop-weed associations from seasonal tillage
 - Seed viability with depth
 - 4 depth intervals:
 - 0-4, 4-8, 8-16, 16-32 cm

Methodology

Seed Emergence

- Determines germinability under glasshouse conditions
- Count seedlings over 3 x 6-8 week periods
- Cold stratification between periods 1 + 2

Treatment Effect: Composition, Diversity & Distribution

- 38 species, 16 functional groups
- Management impacting abundance and distribution
 - Highest diversity in deep plough
 - Diversity increases with depth in no till
- Year 2...
 - No till treatment has been ploughed (Oct 2015)

Why do we care?

Soil Properties and Seed Characteristics

- Role of the weed seedbank influencing physico-chemical behaviour of agricultural soils
- Beneficial bi-products of seedbanks
- Differential mobility capacity depends on seed morphology
- Causes <u>selective</u> erosion of seeds
 - Seed size, shape, presence of appendages and myxospermy

Myxospermy

- Secretion of mucilage
 - "Gluing" seeds to the ground
 - ANTITELECHORY
- Quantitative studies are limiter species
 - Physical alteration to soil due to nature
 - Stabilising soil structure and enh retention
- The unknowns...
 - Capability of specific species/con assemblages to prevent transpo
 - Existence of a mucilage threshol soil properties are altered

Columella (C), Mucilage (M), Rays (R)

Myxospermy: Experimental Progress

Capsella bursa-pastoris

- Outer layer Pectin (non-adherent to seed)
- Inner layer Cellulose (adherent to seed)

Plantago major

Plantago major

Veronica arvensis

Senecio vulgaris

Senecio vulgaris

Myxospermy: Experimental Progress

- Variable pH?
- Variable sugar composition?
- Variable adhesive power?
- Wetting, drying, re-wetting?

Myxospermy: Digestion

- Seed weight:mucilage ratio
 - Extraction of inner cellulose layer with enzyme digestion
 - Outer pectin layer extracted by water
- 2 extraction trials completed
 - Inner layer is difficult to remove
 - Remaining sugar?

Dry Seed Weight Loss	Inner Component	Outer Component
Arabidopsis thaliana	2-8%	14-21%
Capsella bursa- pastoris	1-7%	20-22%
Euphorbia helioscopia	2-4%	10-11%
Plantago major	1-4%	30-40%
Senecio vulgaris	4%	23-27%
Urtica urens	3%	20-27%
Veronica arvensis	2-3%	3-4%

- Experimental Plan
 - 1. Aggregation and adherence of soil particles
 - 2. Mucilage interaction with soil properties
 - 3. Adhesive power

 1. Quantify soil particle mass adhered to seed + mucilage matrix

- 1. Quantify soil particle mass adhered to seed + mucilage matrix
 - Identify the "zone of influence"

- 1. Quantify soil particle mass adhered to seed + mucilage matrix
 - Identify the "zone of influence"

- 1. Quantify soil particle mass adhered to seed + mucilage matrix
 - Identify the "zone of influence"

- 1. Quantify soil particle mass adhered to seed + mucilage matrix
 - Identify the "zone of influence"
 - Mucilage interaction within pore spaces

- 1. Quantify soil particle mass adhered to seed + mucilage matrix
 - Identify the "zone of influence"
 - Mucilage interaction within pore spaces
 - Different particle sizes

- 2. Testing influence of mucilage on soil properties
 - Soil strength
 - Aggregate stability
 - Water retention
- Alter concentrations of mucilage applied to soil
- Involve assemblage mix rather than single species

- 3. Adhesive power
 - Rainfall simulator
 - Varying slopes
 - Soil textures
 - Assemblage mixes including both myxospermous and non-myxospermous species

How can we relate these seed-soil interactions to what we see in the field?

Conclusions

- Weeds are key indicators of management in arable systems
- Tillage and crop type influences seedbank distribution and composition
- Mucilage retain soil structure in erosive environments?

Questions?

Thanks to ...

- Dr Blair McKenzie, Dr Cathy Hawes, Prof John Rowan
- Alan Long, Linda Ford, Anna Taylor, Linda Nell, Paul Neave, Sandra Caul